

Abstract:
Page speed is key for any online business, this whitepaper explains in detail what kind of issues
arise from slow page speed, where these issues originate technically and what possible
solutions entail. We focus on e-commerce applications because the issues are most relevant for
them and the potential upsides of improving speed are most noticeable and directly measurable.
However, the issues discussed here also apply to other online businesses.
Many of these issues cannot be addressed by typical (single server) hosting providers. The
underlying technology frameworks have limitations on how many requests can be handled in
parallel. The solution is seemingly simple but has been hard to implement until recently. Load
balancing, sometimes also called multi-server hosting, addresses the issue by dividing
incoming requests and sending portions of the traffic to different servers. Setting your
infrastructure up this way used to require technical infrastructure expertise usually handled by
DevOps teams which was not readily available or affordable for a majority of e-commerce
businesses. With the advancement of accessible cloud providers this is now in reach for
anyone.

Problem outline:
PHP based applications still make up a majority of all websites out there (77.4% in 2022 [1]).
PHP really only scales with more hardware - the number of server cores directly determines
how many processes your server can handle in parallel. With a four core processor on your
server your PHP site can run exactly four processes in parallel. Typically for an e-commerce
application a single user visiting the website already triggers multiple requests, the frontend call
to your html and css files and on top any number of additional tasks i.e. tracking and analytics,
special offer pop ups or chatbot widgets.
If all cores are currently processing requests (they are “busy”), additional requests get queued in
line and processed once a core becomes available. How long your server takes to process each
request is determined by the CPU frequency and other limiting factors like write/read speed of
the underlying disk space. So in theory there are at least two types of speed issues, the first
type being the servers take too long to process requests (either because the server’s CPU is
insufficient for the tasks or the tasks are overly complicated). The other type of issue arises from
load, meaning there are a lot of requests in parallel and the server's capacity limitations lead to

https://w3techs.com/technologies/details/pl-php

requests being queued. The real life illustration of this would be a packed bakery on a Sunday
morning, depending on the number of people in line in front of you and how long each customer
takes to finish their order the wait time will differ. We will keep using this bakery analogy
throughout the paper, so keep this setting in mind.

Example numbers:
Let’s take a look at what this queuing behavior actually means for customers arriving at any
webshop. Say you are hosting your shop on a typical 4 core (v)CPU with 1-2 GB of RAM server
and per user arriving on the page there are four processes triggered. In bakery terms this
means there are four (average speed) cashiers working and every customer wants four
interactions initially. On a website of course once the user starts navigating around your page
that triggers additional requests, but for simplicity let’s put that aside. If there is one user only
the initial requests take around 50 milliseconds to finish. The second user arriving already waits
100 milliseconds, 50 ms for the requests triggered by the first user and another 50 ms for his
own requests. If there are 100 users arriving at the same time, user number 100 already waits 5
full seconds for the page to load. The users don’t necessarily need to arrive exactly at the same
time either, as long as there is a queue their request will wait for a core to become available.
Users continuing to interact with the server after the page has loaded of course worsens the
issue and lowers the number of parallel arrivals needed to create a lag in load time.

Is a page load of a few seconds really that bad?
Well it depends of course a bit on the specific case, for example users might be fine waiting a
few seconds for something major to happen in the background but an initial page load for an
e-commerce website is not one of these occasions.
Studies show that the first five seconds of page load have the highest impact on conversion
rates [2]. The numbers suggest that an e-commerce page with a 1 second load time has a 2.5x
higher conversion rate than one that has a load time of 5 seconds. That has real direct financial
implications for any business.
There are other factors which might indirectly affect e-commerce KPIs, Google for example has
been known to use page load speed as a direct factor when ranking the search results.
Recently they also outlined their practice to account for page load speed with any ads run via
their platform [3] other major platforms like Meta also rank ads on the perceived quality. Page
load speed therefore directly affects your return on ad spend (ROAS). We have seen this for our
clients as well, switching to modern hosting basically increased their return on ad spend
overnight.

https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm#:~:text=The%20first%205%20seconds%20of,(between%20seconds%200%2D5)
https://developer.chrome.com/blog/search-ads-speed/

Going back to our bakery example we can illustrate another important issue. Waiting in line is
usually not a great experience and if there is a comparable bakery around with consistently
lower wait times more people tend to purchase there instead. This issue is most relevant during
peak times, when lots of people want to go to a bakery, say Sunday morning or during a public
holiday. You could say that wait times are to be expected then but from a business perspective
these times are where a majority of the revenue comes from. Consistently long wait times will
have a major impact on how much is sold during these hours. This is no different for an
e-commerce business, the most prominent example would be Black Friday but even the daily
peak times in the evenings follow this logic. If there is another store where I can get similar
products with less waiting people will go there instead.

On mobile the issues tend to be even more pronounced as mobile network connections add to
load times. Google estimates that 53% of mobile users leave a site when it takes more than 3
seconds to load. The average load time on mobile was a lot slower than this at around 15
seconds [4]. The good news is that in this crowd standing out positively is rather easy.

Improving your user's experience not only decreases initial bounce rates it also makes them
much more likely to return and tell their friends about it. (“Hey Mike, did you try the new bakery
that opened on the corner of main and university avenue? Their bread is delicious and they
have literally no lines because of a walk in walk out store concept”)

Speed up your page load speed
Alright now that we have explored the benefits of faster page load speed, what can you do to
improve yours? There are a couple of things you can do on your side, making sure your pictures
are optimized (i.e. in a webp format), unnecessarily large media files are avoided, javascript is
set up properly and any loading that can be deferred is set up to load asynchronously. This
would be analogous to removing any obstacles to make sure the bakery cashiers have a
straightforward process to serve customers.

Coming back to the previous discussion on parallel requests in PHP though there is little to be
done from the website’s side. How well your page performs under load i.e. when multiple people
are online in parallel depends on the server hardware your site is running on. Traditional hosting
providers usually offer different price tiers with an e-commerce option somewhere on the upper

https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/

end. Basically what is changing as one moves up the tiers is the underlying hardware gets a bit
stronger. In the background there is still a single server where your application resides and all
incoming requests are processed. This approach is however limited and there are smarter
options available. For instance you can train your bakery cashiers to improve their capabilities
but the potential for improvements is limited. Instead it might be smarter to add parallel cashiers
to split the work.

Why single server hosting is not the way to go:
The fastest/largest single server CPU currently available on AWS has 48 cores [5]. It’s not hard
to tell how many parallel user requests even this machine could handle before something gets
queued. The majority of hosting options out there have a lot less cores on their servers. In any
case making the individual server more powerful is (very) costly and from a speed improvement
option not actually the most desirable result.
Instead of using a single more powerful server, large applications use so-called load balancing.
This load balancing analyzes incoming traffic, and distributes it (smartly or evenly) across
multiple servers. The technology has been around for quite some time but setting this up from
scratch on one of the large cloud providers like Amazon or Google is a complex development
project out of reach for a majority of e-commerce sites. Even for startups with the technological
know-how setting this up can be a time-consuming hassle. Luckily a variety of providers have
begun offering similar solutions wrapped inside a user interface that makes it easier to set up
and use.
Allow us one more bakery analogy, hiring and training more cashiers manually might be really
time consuming and difficult but imagine there was a solution that made it super simple to add
new or reduce cashiers (say an affordable, easy to install walk-in walk-out retail solution).

What accessible cloud providers can offer:
Setting up a sophisticated infrastructure to optimize speed does not require deep technical
knowledge anymore. Service providers like Cloudways or Codesphere make this setup rather
simple with immense benefits for your site. Any e-commerce site or solopreneur venture can
take advantage of the technologies powering modern cloud native startups. You can set up load
balancing with just a few clicks, it becomes super easy to set up staging environments where
continuous updates can be tried out. Things like A/B testing are equally easy because
connecting different codebases to one of multiple servers is just a couple of clicks away.

Let’s do a short excerpt into how easy this can be achieved with Codesphere.

The simple steps are:

1. Clone your code onto the server either via Github or SSH (for bigger e-commerce sites
our engineers take care of the entire process)

2. Connect your domain
3. Select the workspaces to run the domain (multiple workspaces -> load balancing,

different code versions in workspaces -> a/b testing)

https://aws.amazon.com/blogs/aws/new-amazon-ec2-x2iezn-instances-powered-by-the-fastest-intel-xeon-scalable-cpu-for-memory-intensive-workloads/
http://codesphere.com

4. Done - Any workspace not connected to your domain gets an internal URL to test things
(i.e. for staging)

More backgrounds and advanced usages can be found in the Codesphere documentation.

Getting set up on a cloud native infrastructure has never been easier. Interested? Book a free
demo now

References:
Php usage statistics - w3techs.com [1]
Page speed issue stats - Portent.com [2]
Ad ranking for Google - developer.chrome.com [3]
Mobile load time stats - thinkwithgoogle.com [4]
Fastest single server on AWS - aws.amazon.com [5]

https://docs.codesphere.com/the-cool-stuff/horizontal-scaling-and-load-balancing
https://calendly.com/timo-codesphere/codesphere-demo?utm_source=WhitepaperActionCall&utm_campaign=Whitepaper
https://calendly.com/timo-codesphere/codesphere-demo?utm_source=WhitepaperActionCall&utm_campaign=Whitepaper
https://w3techs.com/technologies/details/pl-php
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm#:~:text=The%20first%205%20seconds%20of,(between%20seconds%200%2D5)
https://developer.chrome.com/blog/search-ads-speed/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://aws.amazon.com/blogs/aws/new-amazon-ec2-x2iezn-instances-powered-by-the-fastest-intel-xeon-scalable-cpu-for-memory-intensive-workloads/

